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INTRODUCTION

The scientific goal of the experiment is to test the equality of gravitational and inertial
mass (i.e., to test the Principle of Equivalence) by measuring the independence of the rate
of fall of bodies from the composition of the falling body. The measurement is
accomplished by measuring the relative displacement (or equivalently acceleration) of
two falling bodies of different materials which are the proof masses of a differential
accelerometer. The goal of the experiment is to measure the Eotvos ratio dg/g
(differential acceleration/common acceleration) with an accuracy goal of a few parts in
10'5. The estimated accuracy is about two orders of magnitude better than the present
state of the art. The experiment is a null experiment in which a result different from zero
will indicate a violation of the Equivalence Principle.

The main goal of the study to be carried out under this grant is the flight definition of the
experiment and bread boarding of critical components of the experiment that will enable
us to be ready for the following phases of the project. The project involves an
international cooperation in which the responsibility of the US side is the flight definition
of the experimental facility while the responsibility of the non-US partners is the flight
definition and laboratory prototyping of the differential acceleration detector.

In summary, the experiment to be designed is for taking differential acceleration
measurements with a high-sensitivity detector (the sensor) during free fall conditions
lasting up to 30 s in a disturbance-free acceleration environment. The experiment
strategy consists in letting the sensor free fall inside a few meters long (in the vertical
direction) evacuated capsule that is falling simultaneously in the rarefied atmosphere
after release from a helium balloon flying at a stratospheric altitude.

DESCRIPTION OF EXPERIMENT CONCEPT
Need for Picogravity Environment

The accuracy of the Weak Equivalence Principle (WEP) tests with laboratory proof
masses on the ground is limited by the Earth's seismic noise and the weakness of suitable
signal sources. Previous experiments include the famous torsion balance experiments of
Eotvos (1890-1922) ¥ as well as the classical tests of the Equivalence Principle by Roll-
Krotkov-Dicke (1964)" utilizing a torsion balance which had an accuracy of 3 parts in
10" and the LI. Shapiro et al. (1976)" and Williams et al. (1976)" lunar laser ranging
experiment with an accuracy of 3 parts in 10'2. The present state of the art is at a few
parts in 10"® both for lunar laser ranging tests (Williams et al., 1996)" and for torsion
balance tests (Adelberger et al., 1999)™.

By conducting the experiment in free fall, the signal strength increases by about three
orders of magnitude because the full strength of the Earth’s gravity is sensed in free fall.
Seismic noise is also absent in free fall. Seismic noise is replaced in orbit by the noise



sources of the space environment which require drag free stages or drag compensation in
order to achieve the promised improvements in the test accuracy. An orbital free fall,
with a "drag-free" satellite, is one approach that has been under development for many
years. A small number of orbital tests of the WEP has been proposed with estimated

accuracies of 10-15% 10-17 ™ and 10-18*. An alternative to the free fall in space is the
vertical free fall inside a drag-shielding capsule released from a balloon at a stratospheric
altitude as proposed in this experiment™.

An orbital free-fall has advantages and disadvantages with respect to vertical free fall. On
the one hand, orbital free-fall tests can achieve an even higher accuracy than vertical free-
detector. On the other hand, vertical free fall tests have some key advantages over orbital
tests. First of all, in a vertical free fall (from a balloon) the experiment can be repeated at
relatively short intervals of time (a few weeks) and at a more affordable cost. The ability
to repeat the experiment is important for the success because these high-accuracy
differential detectors can not be tested on the ground at the accuracy that they can achieve
in free fall conditions. Therefore, modifications and improvements have to be expected
before the detector/experiment performs at the estimated free-fall accuracy.

Both orbital and vertical free fall are Galilean experiments in which the differential
displacement or rate of fall or acceleration is measured between two bodies of different
materials falling in a gravitational field. However, classic Galilean experiments, in which
the relative displacement of two bodies falling side by side is measured (with drops
ranging from 1m to 140m) have yielded an accuracy™ in testing the WEP of order 10",
The limitation mostly stems from relative errors in initial conditions at release which
propagate over time due to gravity gradients. This problem can be overcome in orbital
and long vertical free falls (i.e., from stratospheric heights) thanks to two provisions: (1)
the initial relative motion of the two sensing masses inside the detector is abated during a
damping phase preceding the measurement phase and (2) the detector is rotated with
respect to the gravity field in order to modulate the signal (at a frequency f5) and move
the frequency of the effect of key gravity gradient components to 2f;.

The test of the Equivalence Principle requires a differential measurement of acceleration.
This fact has a positive consequence in terms of the rejection of accelerations that affect
the two proof masses equally (common-mode type) and their effects on the differential
acceleration. Typical values of the common-mode rejection factor of differential
accelerometers are of order 10, Consequently, for an experiment that aims at measuring
differential acceleration of order 10" g, the acceleration perturbations external to the
detector must be of order 107 g or less.

Drop Facility

The following is a preliminary description of the drop facility the design of which will
evolve as a result of the analyses carried out during the flight definition phase. The free
fall facility (see Fig. 1) consists of: (1) the gondola that stays attached to the balloon; (2)
a leveling mechanism that keeps the capsule vertical before release; (3) the capsule,
which houses a large vacuum chamber/cryostat; (4) the instrument package which free




falls inside the cryostat and contains a small, high-vacuum chamber which in turn houses
the detector; and (5) the parachute system to decelerate the capsule at the end of the free
fall run.

The capsule is kept vertically leveled and stabilized in azimuth by the gondola before
release. Upon reaching an altitude higher than 40 km, the capsule is released from the
gondola and immediately afterwards (s 1 s) the instrument package is released from the
top of the capsule. The analysis indicates (see later on) that with a 1-3 m long vertical
space available inside the capsule, the instrument package will span that space in 25-30 s
while the capsule, that is slightly decelerated by the rarefied atmosphere, falls by a few
km over the same time. The capsule shields the instrument package from external
perturbations and allows it to free fall under acceleration conditions which are close to
ideal. The differential accelerations between the two falling test masses are measured
during the free fall time. At the end of the free-fall run the capsule is decelerated by a
parachute system for recovery in water or over land.

Figure 1 Pre-definition-study configuration of capsule in free fall after detector release
Detector

The following is a preliminary description of the differential acceleration detector, the
design of which (carried out in cooperation with our non-US partners) will evolve as a
result of the analyses conducted during the flight definition phase.

The detector that we plan to use for the experiment is a differential accelerometer
that will be developed at the Institute of Space Physics (IFSI) in Rome (Italy), under the
sponsorship of the Italian Space Agency in the framework of the participation in this
project of non-US investigators (V. Iafolla, PI). This detector technology™ has been
pioneered by V. Iafolla and the late F. Fuligni and applied to the construction of a number



of high-sensitivity, low-frequency accelerometers over several years. In the following we
give a brief description of the detector conceptual design at this stage of the project.

The differential-acceleration detector (see Fig. 2) measures the relative displacement,
along the sensitive axis, between two sensing masses of different materials. The centers
of mass of the sensing masses are made to coincide within the attainable values in order
to minimize the effect of gravity gradients, rotational motions and linear accelerations
upon the differential output signal.

Figure 2 Longitudinal section of instrument and sensing masses.

The two sensing masses are constrained by torsion springs to rotate independently
about the twist axis (which is parallel to the spin axis of the instrument) and their
resonant frequencies are electrostatically controlled for frequency matching. The
displacements generated by the rotations are sensed by the capacitive pick-ups of the
instrument as explained later on. Sensing mass | (in dark color) is a hollow cylimder
mostly made of a given material while sensing mass 2 (in light color) is a dumbboell-
shaped cylinder made of a different material. Each sensing mass constitutes the mo~ving
part of a capacitor with symmetric fixed plates on either side of the sensing mass (see
Fig. 3). Capacitor 1 is formed by sensing mass 1 and the fixed plates marked A arad B
while capacitor 2 is formed by sensing mass 2 and the fixed plates marked C and D. The
fixed plates A and C are used for signal pick-up and the fixed plates B and D for feed-
back control. The displacement of sensing mass 1, for example, is detected by the series
capacitances As (one fixed plate on each side of the sensing mass). These plates form one
branch of a capacitive bridge in which two additional reference capacitors form the osther
branch. The bridge is pumped by a quartz oscillator at a stable frequency of 10-20 l<Hz,
reducing the relevant noise temperature of the preamplifier. The difference betweem the
output signals from capacitors 1 and 2 is amplified by a low-noise preamplifier, sent to a
lock-in amplifier for phase-detection, and then to a low-pass filter.



The cross sections of the ellipsoids of inertia about the spin axis of the instrument are
circular so as to minimize, within the construction tolerance, the mass-moment torques™.
In the detector shown in Figs. 2 and 3, the inner cylindrical mass is made mostly of a
high-density material (e.g., Platinum-Iridium) while the outer dumbbell-mass is made of
a low-density material (e.g., Aluminum).

Figure 3 Interior of differential acceleration detector.

In order to achieve an experimental accuracy of a few parts in 10" in about 25-30 s
integration time, the detector must have an intrinsic noise (expressed in terms of
acceleration) of less than 10 g/Hz'?. Earlier analyses indicate that this level of noise is
attainable with an instrument refrigerated to a temperature close to that of liquid Helium
and with state-of-the-art low-noise preamplifiers.

Experiment Sequence and Communication Links

Figure 4 shows the preliminary timetable of the experiment sequence. The
experiment starts with the loading of the sensor into the vacuum chamber/cryostat about
2 weeks before the planned launch. This operation is then followed by the pumping
down of the chamber and the refrigeration of the sensor. After connecting the capsule to
the gondola and the balloon, the balloon is launched. The estimated time to reach altitude
is of order 3 hours. Upon reaching altitude, the attitude of the capsule is stabilized by the
leveling mechanism on the gondola, the sensor is spun up, and the dynamics of the
system is analyzed. When the dynamics is within the acceptable bounds, the capsule is
released from the gondola and the sensor is released from the top of the chamber/cryostat
immediately afterwards. The science data is taken during the free-fall phase in which the
sensor spans the length of the chamber. Shortly after the sensor has reached the bottom
of the capsule, the blut (first stage of the deceleration system) is released and, when the
speed has decreased below the required value, the parachute is deployed. The chamber is
vented before the capsule hits the surface/water and the locator beacon is turned on.
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Figure 4 Preliminary timeline of experiment

Figure 5 is a schematic of the communication system between the ground, the
gondola and the capsule through radio links and the communication between the sensor
(during free fall) and the capsule through an infra-red link.



Gondola

Infrared to Capsule

Radio to Ground Ground

(

/ST

Figure 5 Schematic of communication links.




ANALYSIS OF FREE FALL PHASE

The free fall time of the instrument package inside the capsule can be computed after
considering that the capsule is slowly decelerated by the air drag while the instrument
package (after release) moves inside the vacuum chamber at low relative speed and
consequently it is unaffected by air drag (it is indeed in free-fall conditions).

Free fall time

The free fall time and vertical size of the vacuum chamber/cryostat can be computed
from the equations of motion of the instrument package in free fall and the capsule in
decelerated fall. The equations of motion are as follows:

z=g

. 1 ] 1

Zz'_'g————CDSpZ; M
2m,

where z is the vertical distance from the time of release (the subscript | stands for
instrument package and 2 for capsule), S is the frontal cross section of the capsule, Cy, the
air drag coefficient of the capsule and p = f(h) is the air density with h the altitude above
the Earth’s surface. Equations (1) can be solved analytically only if C,, is assumed
constant and the atmospheric density exponential. We will not spend time on the analytic
solution because it is valid only for relatively-short drops.

50
40— \
0

Atmospheric density (kg/ms)

0

i | — i
25 30 35 40
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Figure 6 Atmospheric density in the stratosphere per US Standard Atmosphere 1976



After adopting a density profile from the US Standard 1976 Atmospheric Model (as
shown in Fig. 6) the exponential fit of the density for the altitudes of interest is:

p=poe "M )

Where H is the scale height, p, is the reference density which is taken at the Earth’s
surface and h the altitude above the Earth’s surface. The relative distance can be
obtained as the double integral of the acceleration difference between the capsule and the
instrument package &7 =7, — %, which is equal to the deceleration of the capsule due to
aerodynamic drag:

55 = %e(:~110)/ﬂg2’2 (3)

to | —

where p = m/(C,S) is the frontal ballistic coefficient of the capsule, h,, is the drop
altitude, z = (1/2)gt® the distance traveled by the capsule and g the Earth’s gravitational
acceleration. The drop velocity of the capsule is assumed equal to the free fall velocity gt
only for the purpose of computing the air drag deceleration (which is a valid
approximation at high altitudes).

The air drag coefficient Cy, is fairly constant in the non-compressible regime but then
it grows substantially with the Mach number for speeds approaching the transonic regime
as shown in Fig. 7 for an aerodynamically-shaped cylinder with fineness ratio D/L = 8 =
0.25. The Mach number M is the ratio between the actual speed of the capsule and the
speed of sound at the local altitude:

M :W 4)

where R = 287 J/(kg-K) is the gas constant of air, T the local air temperature andy = 1.4.
The Mach number vs. the drop time is shown in Fig. 8 together with the drop distance vs.
time.

As a result of the functional dependence Cp, = f(Mach), we can separate the ballistic
coefficient into two components as follows:

B = BU+AP )

where B, = m/(CpA) is the low-speed ballistic coefficient (i.e., its minimum value) and

Ap is the fractional variation of the ballistic coefficient due to the increase of the Mach
number.
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Figure 7 C, vs. Mach number for an aerodynamically-shaped cylinder with 8 = 0.25 (see
text)
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Figure 8 Mach number and capsule drop distance vs. time

After taking into account the functional dependence C, = f(Mach) and integrating
eqn. (3) twice for different values of the ballistic coefficient, we obtain the numerical
results shown in Fig. 9, for a fineness ratio 6 = 0.25, a drop altitude of 40 km and a (low-
speed) ballistic coefficient 3, ranging from 2000 kg/m* to 10000 kg/m>.
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The numerical results clearly indicate that it is possible to attain a free fall time between
25 s and 30 s with very reasonable lengths of the chamber and capsule. Appropriate
values of the (low-speed) ballistic coefficient in the range of greater interest of 6000-
10000 kg/m* can be readily obtained with capsule masses <1500 kg and external
diameters smaller than 1.8 m. Designs options will be investigated later on in this report.

Relative distance {(m)

0 5 10 15 20 25 30 35
Time (s}

Figure 9 Relative distance for various initial ballistic coefficients
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Figure 10 Capsule deceleration due to air drag (B, = 6000)
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Figure 11 Limit velocity and actual velocity of capsule vs. altitude (3, = 6000)

For completeness the deceleration of the capsule caused by air drag is shown in Fig. 10
for 8, = 6000 kg/m*. Figure 11 depicts the limit velocity and the capsule actual velocity
vs. altitude for the same case. The limit velocity is the velocity at which the gravitational
and air drag force are equal and, consequently, for a limit velocity much greater than the
actual velocity the air-drag deceleration is very small.

Effect of Wind Shear

The horizontal velocities of the capsule and the instrument package (attached to the
capsule) are the same at the start of the fall. The inertial horizontal velocity is determined
by the rotational velocity of the Earth at the latitude of capsule release and by the local
wind. The former (which is much bigger than the latter) simply makes the falling bodies
follow a parabolic trajectory rather than a fall along the local vertical. The maximum
lateral displacement is of order a couple of hundred meters over a fall distance of 4.4 km
which is consistent with a 30-s fall time. It is also worth pointing out that this lateral
displacement does not generate any acceleration on board because the displacement is
due to an initial non-null velocity and not to external acceleration acting on the falling
body.

The diameter of the capsule is important for tolerating vertical gradients (wind shear)
of the lateral wind without the need for a propulsion system to compensate for their
effect. The balloon will move at the speed of the local wind once the floating altitude has
been reached, i.e., the capsule will be at zero relative speed with respect to the local wind.
If the wind vertical profile were constant, the capsule and the instrument package would
move laterally during the fall with the same initial lateral velocity and hence maintain the
same lateral distance with respect to one another. But, if the wind vertical profile
changes, the capsule will experience a lateral force that will change its lateral speed while
the instrument package will not experience such force.

13



The lateral displacement y of the capsule due to the wind shear V, = 0V/dz over the
vertical drop distance (Z = 1/2gt’) is as follows:
AR
y =2y @®)
308 ¢

where p is the atmospheric density, B, = m/(C,S)) is the lateral ballistic coefficient of the
capsule, S, the lateral area of the capsule, and g the Earth’s surface gravity. Equation (8)
is simplified because the atmospheric density has been assumed constant over the drop.
The equation, however, provides a good estimate of the lateral displacement of the
capsule due to wind shear after adopting the average value of the density along the drop.
After calling S the frontal area of the capsule and assuming that Cp, = 10C,, S, = 3S/(nd),
which are valid in approximation for a cylinder with aerodynamic nose and tail, we can
relate the lateral ballistic coefficient to the frontal (low-speed) ballistic coefficient as
follows:

o
= 9
Bi=3, Bo ®)
Consequently, eqn. (8) yields:

=—L_vV (10)

Lateral displacement (m)

0 2000 4000 6000 82000 10000
By . front ballistic coeff. (kg/m’)

Figure 12 Lateral displacement due to wind shear vs. 3,
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Forp = 6x107 kg/m’ (i.e., average atmospheric density between 40 km and 35 km of
altitude), V, = 0.005 s, and 8 = 0.25, we obtain the results shown in Fig. 12. A check of
the accuracy of eqns. (8) and (10) was also made by means of numerical integration of
the equation of lateral motion after assuming an exponential air density profile. The
displacement error is less than 5% by using the average density value. The value adopted
for the wind shear of 0.005 s is equivalent to a vertical gradient of 10 knots per km.
This value is twice as high as the maximum wind shear reported™ for the Air Force
balloon base at Holloman, New Mexico.

The lateral displacements due to wind shear are relatively small for rather
conservative values of wind shear, free-fall times and ballistic coefficients greater than
6000 kg/m?, which are easy to obtain. These results show that there is no need for a
thruster system to compensate for the effect of the lateral wind acting on the capsule.
The geometry and mass of the capsule can be chosen in a way to accommodate the
presence of wind shear. Furthermore, if the balloon is launched during the periodically-
occurring wind reversal times (in April-May and September-October) the vertical wind
gradient is much smaller than the value adopted for the computations shown here.

The capsule displacement due to wind shear has to be taken into account when computing
the internal diameter of the capsule (where the instrument package falls). However, it
will be shown later on that other factors (e.g., gravity gradients) are more important in
determining the capsule internal diameter.

15



SCIENCE CONCEPT ANALYSIS

The error analysis has been extended with respect to what is reported in Ref™ to
include a thorough analysis of the gravity gradient generated by the distributed mass of
the capsule, the concentrated masses on board the capsule, and the Earth’s mass for
generic positions and orientations of the sensor. The acceleration noise inside the capsule
has also been revisited after considering that in the new reference design (see later on) the
chamber is fully cryogenic. The intrinsic noise components of the detector (Brownian
and preamplifier noise) were also recomputed based on new information from the IFSI
laboratory. As a results of these new analyses, requirements have been derived for: (a)
the mass distribution of the capsule; (b) the tolerable mass and location of equipment on
board the capsule; (c) the orientation of the sensor during free fall and the centering of the
two sensing masses; and (d) the characteristics parameters of the detector that affects its
intrinsic noise level.

Acceleration Noise inside Capsule

The experimental package moves at very low speed inside the capsule. Consequently,
the residual gas inside the vacuum chamber produces a minute force on the free-falling
package with a frequency content centered at f = 1/t s where t; is the free-fall time. This
gas thus affects the acceleration of the instrument package in a frequency range well
removed from the signal frequency. The acceleration, as a function of pressure inside the
chamber, is as follows:

_C,AV?p

a. = 11
° 2m RT (10

where A and m are the frontal area and mass of the instrument package, respectively, V
is the maximum velocity of the instrument package with respect to the falling capsule, R
is the gas constant, T the temperature of the residual gas, and p the pressure inside the
chamber. Because of the new reference design (see later on) with a fully cryogenic
vacuum chamber, the residual gas in the chamber is refrigerated Helium. After assuming
C,, = 2.2 (for a free-molecular regime), A = 0.1 m?, m = 30 kg, V = 0.5 m/s (obtained by
integrating eqn. 3 once up to 30 s), R = 2078 J/(kg-K), T = 5 K, and p = 10 mBar, eqn.
(11) yields a, = 10"** g. The spectrum of this acceleration is centered at a frequency
0.033-0.05 Hz for free-fall times t, in the range 20-30 s. Consequently, the magnitude of
the acceleration at the signal frequency f,, which is in the range 0.2-0.5 Hz, is well
smaller than 10"'? g. This acceleration is a common-mode acceleration which is further
reduced by the common-mode rejection factor (CMRF) of order 10°.

Furthermore, the vacuum strongly attenuates the propagation of perturbations from the
walls of the capsule to the free-falling instrument package. The estimate of the
acceleration at the falling instrument package produced by the vibrating walls of the
capsule are based on the experimental data measured on board the system Mikroba*".
This system shares the fall from a stratospheric altitude; it is not, however, a free-falling
experimental package inside the shielding capsule. In Mikroba, the measurement

16



package or experiment is solidly attached to the walls of the falling capsule. Moreover,
Mikroba is not propelled during the first 30 s (like our experiment) although it is
propelled downwards during the next 30 s. Once the magnitude of the acceleration at the
walls |a, | is known, the magnitude of the acceleration at the falling package |a| can be
readily computed as explained in the following. The motion of the vibrating walls
increase the kinetic energy of the gas molecules above the thermal velocity. The kinetic
energy variation is then expressed as a pressure variation Ap of the gas after equating the
increase in kinetic energy to the work done on the gas molecules by the vibrating walls.
We then assume, conservatively, that the pressure perturbation Ap acts on one side only
of the instrument package in order to compute an upper bound of the acceleration
disturbance imparted to the package. The upper bound of the acceleration at the

instrument package is as follows:
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Figure 13 Acceleration measured on board the Mikroba capsule (with accelerometer
solidly attached) during the fall [Kretzchmar, 1999]

In equation (12), A and m are the cross section and mass of the instrument package, v
is the thermal velocity of the residual gas, a and a,,,, are the accelerations of the package
and the wall, respectively, p is the pressure inside the capsule, u,,; = a,,/® is the velocity
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and o the angular frequency of the vibrating walls. If, for example, p = 10° mBar and the
temperature of the gas inside the capsule is slightly higher than LHe, we obtain an
attenuation factor a/a,,, = 6x10"'° at the signal frequency of our experiment (~0.5Hz). In
other words, the high vacuum provides an excellent attenuation of the wall vibrations.
The capsule walls do not necessarily vibrate at the signal frequency of the instrument.
The cryostat will be designed with structural frequencies much higher than the
experiment signal frequency. However, in this early stage of the design and for
conservativeness, we assume that the wall acceleration has a component at the signal
frequency with an intensity equal to the largest magnitude of the acceleration recorded on
Mikroba during the first 30-s of fall, that is, a,,,; < 10" g (although not very visible in Fig.
13). We then obtain an acceleration at the instrument package of order 10" g under
rather conservative assumptions. Consequently, the free-falling capsule reduces the
acceleration noise to values unmatched by any other Earth-based drop facility and
comparable to values achieved on board the Triad drag-free satellite™™.

The acceleration components above are common-mode-type (i.e., they affect equally both
sensing masses) thus they can be further reduced by the common-mode rejection fact of
the differential accelerometer. With a typical value of 10 for the CMREF, the influence
of these accelerations on the differential measurement is made negligible.

The acceleration noise components produced by the residual gas in the capsule are
proportional to the pressure inside the capsule. The pressure can be reduced in
successive flights if, for any unanticipated reasons, its influence on the measurement
proves to be greater than expected. It is, in fact, well within the state of the art to obtain
pressures at room temperature as low as 10® mBar in large volumes.

Internal noise of detector

The most important internal noise sources for a high accuracy mechanical detector like
the one proposed for this WEP test are: (1) preamplifier noise; and (2) thermal noise
(Braginsky, 1974, Giffard, 1976™). The combined effect of these two noise
components upon the acceleration spectral density S, of the detector's output is given by
the following equation for an instrument with the measurement frequency smaller than
the resonant frequency ®o, a measurement bridge pumped at the frequency @, (of

xxi.

typically tens of kHz) and a preamplifier that matches the transducer impedance™:

1/2

2

5 =L m(z”nﬂ oIz 13
8 meﬁ' Q 6wP

In equation (13), the two terms in round parentheses correspond to the Brownian noise
and the preamplifier noise, respectively; g is the detector resonant frequency; kg the
Boltzmann's constant; T the ambient temperature; Tp the preamplifier noise temperature;
Q the quality factor; mefr the effective mass of the sensing mass; and P the
clectromechanical transducer factor. The effective mass is used to convert a rotation of
the sensing mass into a translation of equal energy. Its relationship to the mass m is: meff
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= m(n/l)*> where 1 and [ are, respectively, the radius of inertia and the lever arm with
respect to the rotation axis of the sensing mass. With the geometry of the sensing masses
in our detector meff = 1.8m.

Clearly, from eqn (13), we see that the sensitivity of the detector increases by
decreasing the resonant frequency and the temperature, and by increasing the mass of the
sensing masses and the Q-factor. Liquid He (4.2 K) refrigeration will be used to provide
low Brownian noise and a high Q-factor. These are necessary conditions to achieve the
desired measurement accuracy. In order to derive requirements for the detector, we
assume that the contribution of the Brownian noise is about equal to the contribution of
the preamplifier noise. In this case, if we set our experiment accuracy goal to a few parts
in 107"° (with 95% confidence level and a 20-s integration time) each one of the two noise
components should be smaller than 6x10™"° g/ JHz . These noise requirements imply the
following (see also the section on Requirements Development):

T<10K; T, <60 mK; m> 5 kg; m/Q < 2n/ 10° rad/s (14)

These requirements do not exceed the state-of the-art but they do require a very
careful construction of the detector with low dissipation and the use of very-low-noise
preamplifier. Key quantities like the Q-factor at low temperature and the preamplifier
noise will be measured experimentally by our partners at IFSI once a prototype
laboratory detector is built. Noise contributions other than the intrinsic noise components
of the detector should be kept at a lower level in order to make them smaller than the
intrinsic noise.

Gravity Gradients
Capsule Gravity Gradients

The gravity gradients generated by the distributed mass of the chamber/cryostat and
their effects on the differential measurement are analyzed in the following for a generic
position of the detector inside the capsule and a generic orientation of its spin axis with
respect to the gradient field.

Gravity gradient for a mass distribution with cylindrical symmetry

For a mass distributed with cylindrical symmetry, the resultant gravitational
acceleration has two components:

a,= acceleration component along the cylinder axis
a, = acceleration component along the cylinder radius
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v

Figure 14 Reference frames for gravity gradient analysis

After erecting a Cartesian reference system Xyz as depicted in Figure 14, the
components of the gravity gradient tensor are computed according to the following
transformation formulas:

dx = cos(8) -dr —r - sin(0) - dO

dy = sin(0) -dr +r - cos(0) - db (15)
da, =cos(0) - da, —a, - sin(0) - do

da, =sin(0)-da, +a, -cos(6) - do

Setting 8 = 0 and indicating the spatial derivative with a second subscript:

ax =ar

a, =0

and

aXX zarr

a,=0

a,=a, /¥ (16)

a.=a,=0

Hence the gravity gradient tensor has the form:

r=| 0 al/r 0 17
al’Z 0 aZZ
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As a result of the Laplace equation, the trace of the gravity gradient tensor is equal to
zero, that 1s

a, +a,/r=-a, (18)

In the singular case of r = 0 the limit calculation yields:

a, 0 0
Feo=| 0 @ 0 (19)
0 O - 2arr

Gravity gradient matrix of a rotating body

In general a gravity gradient matrix has the form:

i;-j
!
-

Xy X
I = ryx 1“yy I_‘yz 20
FZ’/Y ryz FZZ

The rotated matrix I"” after a 6 = @t rotation is:
I" = RIR] 21
where R, is the rotation matrix and Ry its transpose.

After a rotation about an axis (i.e., the x’ axis), the rotated matrix has four components
modulated at w, four components modulated at 2w and one component that is not

modulated.
The w-modulated components of the transformed matrix are:
I, =13 =T sin(@- )+ T, cos(w- 1) (22.1)
I7;=T3 =T, cos(w- ) -Tsin(w- 1) (22.2)
where x’ = 1, y’ =2,z = 3. In summary, the off-diagonal components I'", =17, and

I’,, = I, of the gravity gradient matrix produce components that are modulated at the
rotation frequency.
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Gravity gradient matrix projected onto body axes

In a general case the body reference frame placed at the CM of a sensing mass of the
detector can be identified with respect to the cryostat frame by means of 3 successive
rotations as follows:

1 - Rotation +¢ around z axis (azimuth rotation)
2 - Rotation +p around y’ axis (elevation rotation)
3 - Rotation +t around x’’ axis (spin rotation)

In the computation of gravity gradients, these rotations can either be rotations of the
sensing mass with respect to the cryostat or, equivalently, rotations of the cryostat with
respect to the sensing mass. In the former case, and solely for the reason of pointing out
a typical geometrical situation, the first and second rotations could, for example, be
caused by the detector dynamics during free-fall (e.g., precession of its body axes) while
the third rotation is the wt rotation of the detector about its longitudinal axis aimed at
modulating the signal.

Clearly, we are mostly concerned about the components of the gravity gradient matrix
that contain a frequency ® equal to the modulation frequency of the signal. We can
choose the body axis y* = 2 to coincide with the sensitive axis of the accelerometer and,
consequently, we are only concerned with the component I, of eqn. (22.1). In general,
the moduli of the two components I, and I, are the same and they can be written as
follows:

x=4Ty 4T (23)

After rotating the original matrix by two rotations ¢ and B (where a is the azimuth of the
spin axis with respect to the radial and f is the elevation with respect to the capsule
equatorial plane) the expressions of I',, and T',, in eqn. (23) are as follows

[, =k sin(B)sin(a) — k, cos(B)sin(2a) (24.1)

[, = k3sin(2f) + k, cos(cx)cos(2P) + k, sin(2fB)cos*(cr) (24.2)

k =a, (24.3)
1

ky = E(a’“ -a,) (24.4)
L= 1

3 = E(ayy -a,) (24.5)
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and where the a; are the matrix components before the rotations are carried out. In the
case of a body with cylindrical symmetry and for cylindrical coordinates, eqn. (16) yields
a, = a,, a, = a/lr, a,, = a,, a,, = 4, and the other components are null.

Using numerical analysis of eqns. (24) and taking into account that inside a cylinder
k, is always at least one order of magnitude less than k,; and k;, we find that the maximum
value for % occurs for a = 0. This result implies that the maximum disturbance of the .
capsule gravity field on the differential accelerometer is produced when the capsule
moves radially with respect to the sensor (see Figure 15) in such a way that the spin axis
is oriented along the radius of the cylinder through the sensor and the capsule has been
displaced radially with respect to the sensor (e.g., by wind shear).

spin axis

Figure 15 Geometry of sensor and capsule (viewed from the top) for strongest gravity
gradient affecting the measurement

On the opposite end, if the motion of the capsule is such as to keep o close to 90°,
that is the spin axis is orthogonal to the radial, the disturbance is minimum. In any case
since the translational motion of the external capsule is not predictable nor controlled, the
worst condition is analyzed setting o equal to zero and varying the angle . After doing
so eqns. (23) and (24) yield:

%= (ks + ky)sin(2B) + k, cos(2) (25)

Equation (25) summarizes the disturbances induced by the cryostat mass modulated
at the measurement frequency. This equation is important for the cryostat/capsule design.
The variations of the quantities k,, k;, k; inside the cryostat for different shapes and sizes
are analyzed numerically in the following subsection.

Variation of k,, k,, k;in the cryostat/capsule

A numerical code has been developed in Matlab to compute the gravity gradient
matrix inside a distributed, massive cylinder. The program, which uses a very large (of
order 10*) number of mass points, can map the desired components of the gravity
gradient matrix inside the enclosed surface. The program has been exercised for a
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number of cylinders with different H/D ratios (where D is the diameter and H the height)
and different caps. Each run takes a couple of hours on a Pentium [ PC.

Cylindrical cryostat without caps

We first analyzed the gradient field for various cases of cylinders with various H/D
(height over diameter) ratios to conclude that the gradient field is strongly reduced (for
the components of interest) for H/D > 1

The following results are for a cylinder of uniform mass distribution with the following
characteristics:

Cylinder mass = 500 kg; Dimensions: 1 m (dia) X 1 m (height)

A
z

]
-t

\

Figure 16 Schematic of cylinder and reference frame

Vertical profiles at r = 0 (along centerline)
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Figure 17 All components of gravity gradient along a vertical profile at r = 0 (units are
f,=ma, in kg/s’ = s for 1-kg test mass)
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Vertical profiles at r = 10 cm
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Figure 18 All components of gravity gradient along a vertical profile at r = 10 cm (units
are f, = ma,, in kg/s’ = s for 1-kg test mass)
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Figure 19 All components of gravity gradient along a vertical profile at r = 20 cm (units
are f, = ma,, in kg/s* = 5™ for 1-kg test mass)
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Figure 20 All components of gravity gradient along a vertical profile at r = 30 cm (units
are f = ma,, in kg/s* = s” for 1-kg test mass)
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Figure 21 All components of gravity gradient along a vertical profile at r = 40 cm (units
are f, = ma,, in kg/s* = s~ for 1-kg test mass)

31



The following is a contour plot of the k, component inside the cylinder and the radial
profiles of this component along radii at various distances from the cylinder’ s equatorial

plane.

Figure 22 Contour plot of capsule gravity gradient component k, = a,, (s?) for a cylinder
with H/D = 1-m/1-m
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z = 10 cm (above cylinder’s equatorial plane)
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(continued)
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z = 30 cm above cylinder’s equatorial plane
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Figure 23 Gravity gradient (a,, = k, component) for latitudinal sections at different
distances above the cylinder’s equator (units are f, = ma,, in kg/s? = s for 1-kg test mass)
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Figure 24 Contour plot of capsule gravity gradient component a,, (s”) for a cylinder with
H/D = 1.5-m/1-m

Figure 24 shows the contour plot of the k, = a,, component for a cylinder with H/D =
1.5-m/1-m. Note that the strength of the gravity gradient in the area of interest (near the
cylinder’s centerline) is strongly decreased thanks to the lengthening of the cylinder in
the vertical direction.
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As the cylinder is stretched along the vertical, the effect of the cylinder edges (which
produce stronger gravity gradients) is smaller the closer the detector is to the cylinder’s
centerline, where the detector free falls. In the following plots we will show all the
gravity gradient terms k;, k; and k; (modulated at ) inside a cylinder with dimensions
close to those that we are considering at the present stage of development of the design.
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Figure 25 Cylinder without caps and H = 2.3 m; D = 1.2 m; overall mass = 500 kg.
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Variation of k,. k. and k; along free-fall trajectories

Based on the evaluation of the dynamics of the instrument package relative to the
capsule (see also later on), we can map trajectories of the instrument package inside the
capsule and evaluate the maximum values of the gravity gradients that the detector will
experience during the fall.

It is important to evaluate the strength of the gravity gradient field inside the cryostat
along a worst-case trajectory of the instrument package (sensor) that moves with respect
to the cryostat/capsule during free fall. Based on worst-case wind shear conditions the
trajectory (in z-r coordinates) of the sensor with respect to the cryostat can be expressed
as follows:

=2y — Lt exp(ctz)
0
(26)
. dgzt()
0 8703,

with a = 0.149636, b =0.001692, ¢ = 3.084, and d = 6x107 (see section on Optimization).
In equation (26), B, is the low-speed ballistic coefficient, z, and r, are the coordinates of
the point of release in the cryostat coordinate frame and vy is the angle of the capsule’s
longitudinal axis with respect to the local vertical which (at this stage of the project)
represents a reasonable upper limit for the verticality error of the capsule during the fall..

+ (z—2gp)siny
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Cylindrical cryostat with flat caps

D

< > The Matlab routine has been modified to include
-t cryostat caps of different shapes. The routine

A A Teroy Y . .
JI- creates a two-dimensional mesh of point masses
v el uniformly distributed on the average surface of
L R il . the cylinder and its caps. In the case of flat caps
H b PSRN 1 i the mass distribution results in a closed
SR A BRI cylindrical surface of height H and diameter D.
. il The gravity gradient field has been mapped on
‘. 3 the z-x plane where x coincides with the
¥ ;1:_.;..'.;.:.'. ‘_._&.J-_f. cylinder’s radial and z with the longitudinal axis,

as far as s = 10 cm from the top and bottom and ¢
= 20 c¢m from the side walls.

The point of release P lies on the symmetry axis of the cylinder and at d = 40 cm from the
top. The sensor trajectory obeys eqns. (26) with 3, = 10000 kg/m’® and the capsule
verticality error y = 5° has been conservatively assumed to produce a constant, lateral
displacement of the sensor in the same direction of the wind shear. The other parameters
in egns. (26) also represent a worst-case scenario for lateral displacements. The key
quantities k;, k, and k; are plotted as contour plots on the x-z plane in Figs. 26.
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(continued)
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k2 (115%)

Figure 26 Contour plots of k;, k,, k; for a cryostat with flat capsand H=23m,D =12
m and total mass = 500 kg.



The quantities k,, k,, k, are then computed along the trajectory of the instrument
package and the power spectral densities are computed over the free-fall time of 26 s.
Results are shown in Fig. 27 where the peaks with frequency 1/t; = 1/26 Hz due to the
free-fall duration, are clearly visible in the spectra.
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Figure 27 k,k,.k; along the trajectory and their spectra.
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Figure 26 shows that the quantity k; is relatively larger than k; and k,. Consequently,
eqn. (25) poses a limit for the angle {3 that defines the capsule attitude with respect to the
spin axis of the sensor. After neglecting the much smaller k, (and k, which depends on
cos(2p)) we find that the maximum allowable B is:

1 . (X
= —sin~ | ==X 27
B = o™ (2 @

With a x,.,, of 10° s? and the results shown in Fig. (27), we obtain a limit of 4.8 deg for
B, which is a relatively large value.

Cylindrical cryostat with hemispherical caps

A
A cylindrical cryostat with hemispherical caps has also
PreTTITIR I been analyzed. The gravity gradient distribution has been
mapped on the x-z plane, where x is the cylinder’s radial
and z the longitudinal axis, between the base of the upper
c and lower hemispheres and as close as ¢ = 20 cm from
the side wall.
The release point P (and starting point for the simulation)
lies on the symmetry axis of the cylinder and at the base
of the upper hemisphere. The sensor trajectory is the
same as in the previous case.
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K2 (1/52)
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Figure 28 Contour plots of k,, k,, k; for cryostat with hemispherical caps and H=2.5 m,
D = 1.2 m and total mass = 500 kg.
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Figure 29 k,, k, k; along the trajectory and their spectra.

The analysis carried out here and additional results not shown in this report lead to
the definition of a stand-off distance of about 40 cm between the sensor CM and the
heavy part of the cryostat walls to provide w-modulated components of the gravity
gradient that are sufficiently low for the sizes and masses relevant to this project.
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Earth's gravity gradient

We compute here the Earth’s gravity gradient tensor and we analyze the effects of
Earth’s gravity gradient components on a rotating detector with a generic orientation of
its spin axis with respect to the gravity gradient field. Let us consider the gravitational
potential per unit mass at a point (x, y, z) with respect to the detector’s center of mass:

— K (28)
J&-R) +(y-R) +(z—R,)

where Ry, Ry, R, are the components of the radius vector R from the Earth’s center to the
detector’s CM (in which Z is the local vertical) and p is the Earth’s gravitational
constant. After projecting about the detector’s body axes in which x is the spin axis and
calling © = wt the rotation about the spin axis and ¢ the elevation angle of the spin axis

with respect to the horizontal plane:

R, = R(f)sin(¢)
R, = R(f)cos(¢)sin(wr)
R, = R(1)cos(p)cos(wr)

(29)
The gravitational acceleration in body axes is obtained by substituting eqns (29) into
eqn. (28) and computing the gradient:
T
(80:8,-8:) =-VV (30)

The components of the gravity gradient matrix in body axes are finally computed by
taking a further derivative with respect to the spatial coordinates, to yield

8o = =23 [-2+ 3c05'(9)] GLD)
g, = 3% sin(awr)cos()sin(¢) (31.2)
8 = 3%cos(wt)cos(¢)sin(¢) (31.3)
8y =~ L1 = 3c0s’(9) + 3cos’(@n)cos’(9)] (31.4)
8y: = 3%008(6!)08@@??95_’(?) - 7 (31.5)
8 =L -1+ Bcos’ (@n)cos’(9)] (31.6)
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Here again, the components modulated at @ are g,, and g,, (in which x is the spin
axis). In other words, if the spin axis lies on the horizontal plane, the detector only sees
components modulated at 2w but if it is not, components modulated at the frequency
o appear. The strengths of these components are proportional to the tilt angle with
respect to the local horizon. Note also that the effect of the Earth’s gravity gradient on a
rotating body can be readily applied to the space-based tests of the Equivalence Principle
in which the only difference from the balloon-based experiment is the slightly larger
value of the radial distance from the space-based sensor to the Earth’s center.

An alternative way of portraying the origin of the ®-modulated components of the
Earth’s gravity gradient field is by considering the following. If the z-axis of the body
reference frame is directed along the local vertical (that is the spin axis x of the sensor is
on the horizontal plane) then the gravity gradient tensor is

M -1 0 O
Gey = =40 -1 0 32)
o 0 2

The tensor does not change under a rotation about the z-body axis due to its structure
which reflects a symmetry about the radial line. Consequently, we can choose the
azimuth orientation of the spin axis at will (let us call it the y-body axis). A rotation ¢
about an axis perpendicular to the spin axis produces terms g’,, = g’,, in the transformed
tensor:

g‘xx O g'xz
Iy = RIR] = —(%i 0 -1 0 (33)
gx 0 &

where

g =—1+3sin’¢
g ,=—1+3cos’ ¢ (34)
8= &, =—3singcos o

The g’,, and g’,, terms are subsequently modulated at the frequency w by the rotation
0 = wt about the spin axis as shown previously.

Since there are terms modulated at the signal frequency ®, we have to make sure that
they are kept lower than the accuracy with which we want to measure the signal. From
the detector point of view, there will be requirements imposed on the centering of the
sensing masses and their attitude with respect to the Earth’s gravity field as shown in the
following section.
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Disturbances induced by concentrated masses on boar

Let us consider the reference system (X, y, z) fixed to the sensor with origin at the
center of mass and with x oriented along the spin axis and let us indicate the position of a
point mass m, in proximity of the sensor in spherical coordinates (3,y,p) (see Fig. 30).

A

Figure 30 Geometry of the 's:erhsi'ng mass and reference frame
The position of m, is then expressed as:

X, = pcosd cosy
y, = psind cosy (35)
z, =psiny

The gravity gradient matrix at the detector due to the gravity field induced by a mass
point m, is:

3x? - p? 3xy 3xz
G- mp 2 2
Fm,, = - 3yx 3x*—-p 3yz (36)
p 3zx 3yz 3x*—p?

Considering a sensor that rotates with respect to a fixed point mass in its proximity
we obtain the two w-modulated components already shown in the previous paragraphs:

I, =05 =Tsin(@- )+ T, cos(w- 1) (37.1)

IV, =Ty, =T, sin(w 1)~ T}, cos(w - 1) (37.2)
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The moduli of the two w-modulated gravity gradient components I, and T, are the
same and can be expressed as follows:

G.
y =7 4y (38)

p

which shows that the masses located on the plane y-z (i.e., x = 0) do not generate
disturbances with the same frequency as the measured signal. Substituting eqn. (35) into
(38) and extracting p yields the minimum distance for a point mass to produce a
disturbing gradient equal to or less than the critical gradient a,, .

1/3
G-
Poin = _——ml-|cos dcos 71@# Scos’ y+sin’ Y] (39)
Agg-max

Setting a limit of 10° s for a,,, we plot the locus f(p,Y,8) = 0 of the points in space
with a,, = 8, ., in Figure 31 for a disturbing point mass of 1 kg. Next, meridian sections
(rotated about the z-axis by the meridian angle 8) of the same locus are plotted for
different values of the angle & in Fig. 32 where r is the radial direction.
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Figure 31 Locus of w-modulated gravity gradient component with strength = 107 57
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Figure 32 Meridian sections of locus in Fig. 31 for different angles 8 [ = 0 (i.e., y-z
plane) - solid black line; & = 15° - blue dots; 8 = 30° - red dash; § = 45° - gray dash dot]

The worst case meridian section at 8 = 45° is plotted for different values of the
perturbing mass in Fig. 33.

Figure 33 Meridian sections for 8 = 45° and different values of perturbing mass m,
(m, = 1 kg - solid black line; m, = 10 kg ~ blue dots; m,= 100 kg - red dash)

The previous analysis defines exclusion zones for concentrated masses on board the
capsule. In general, masses can be placed rather freely on the y-z plane (perpendicular to
the sensor spin axis). Masses lying on this plane generate only 20-modulated components
whose strength only needs to be reasonably smaller than the upper bound of the dynamic
range of the sensor. The Earth itself produces such 2e-modulated components with a
strength equal to 3x10° s that is well stronger than the sensor sensitivity (for realistic

49



values of the sensing mass CMs errors), but is about 3-orders of magnitude lower than the
dynamic range of the sensor. For the 2w-modulated term, the equivalent Earth is a mass
of 22,500 kg at 1-m or a 22.5 kg at 10 cm from the sensor.

Requirements related to the w-modulated components are more stringent and,
consequently, we will concentrate on these components which have been dealt with in
this analysis. In summary, concentrated masses should be placed as close as possible to
the y-z plane (perpendicular to the sensor spin axis). For masses away from the y-z
plane, Fig. 33 defines the exclusion zones from the sensor for different mass values under
the worst possible condition of masses placed on the 45° meridian plane.

Effect of Gravity Gradients on Differential Acceleration Measurement

The differential accelerometer consists (from the mechanical point of view) of two
sensing masses with ideally coincident centers of mass (CM). The equivalence violation
signal is measured as a differential displacement along the y-body axis of the sensor
which is orthogonal to the spin axis along the x-body axis. In reality the two centers of
mass (or more appropriately centers of gravity) do not coincide and CM, (i.e., the CM of
mass 2) is displaced by a position error vector § with respect to CM, as follows

é =19, (40)

We can place the body reference frame at CM, and compute the differential
acceleration due to gravity gradients by simply multiplying the gravity gradient matrix in
body axis , that is

da, S
da, | = (PF+TC+TY} 8, (41)
daz J,

<

where I'E, TS, T™ are the gravity gradient matrices of the Earth, the distributed capsule
mass and concentrated masses on board the capsule, respectively. Since the differential
accelerometer measures only the component along the y-body axis, we obtain finally:

_ E C M E C M E C M
da, = ([ +I,+1; )0, + ([T, + I, + Ty )5y + (I, + T, + T, )3, (42)

in which Fy‘i, I‘yi,
the other terms in eqn. (42) are modulated at 2w. In conclusion, the disturbing
differential acceleration along y produced by gravity gradients can be expressed as

follows:

and F}’,‘f are the components modulated at the signal frequency ® while
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da, < 3%cos(¢)sin(¢)sin(wt)5x + [(ky + k3)sin(2P) + k, cos(28)] sin(ewr)d, 43)

+ ay@ + £,Q08)+ f.Qwd,)

where k|, k,, and k, are the gravity gradient terms (see previous subsections) generated by
the capsule in the capsule-body reference frame, ¢ is the elevation of the spin axis with
respect to the local horizon, f is the elevation of the spin axis with respect to the
equatorial plane of the capsule, ay(®w) is the w-modulated disturbing acceleration (in
functional form) produced by concentrated mass on board the capsule (see previous
subsection) and f, (2w, 5y) and f (2w, 8,) represent all the other 2w-modulated components
which have been separated in eqn. (43) according to the centering error components.
Note that the 2w-components depend only on the centering errors 6, and 6, while the -
components depend only on the centering error 8,. The less-than sign in eqn. (43) is due
to the fact that, on the right hand side of the equation, we have adopted the strongest
value of the w-modulated gravity gradient component of the capsule, that is, for o = 0
(see Fig. 15). Moreover, from the analysis of the capsule gravity gradients, we have
concluded that if we keep the sensor (at the CM) about 40 cm away from the heavy part
of the chamber/cryostat walls, the w-modulated gravity gradients are well below the
critical value of about 10° s?. Based on similar reasoning, we assume that the
concentrated masses on board the capsule are placed outside of the exclusion zones
(defined in the previous subsection) in order to keep them below the critical value. In
other words, an appropriate design and a careful mechanical construction of the sensing
masses (8, of order microns) will make the gravity gradient contribution of the capsule

and the concentrated masses on board the capsule negligible.

To attenuate the effect of the gravity gradient of the Earth we have to make sure that
the product sin(¢)cos(¢)d, is sufficiently small. In other words we can trade the position
error between the CMs of the sensing masses along the spin axis 0, for the tolerable angle
¢ of the spin axis with respect to the local horizontal. For small values of ¢, we readily
compute that for the first term on the right hand side of eqn. (34) to be smaller than, let
us say, 107 g, the product ¢8, must be smaller than 0.1 deg-pm. This requirement must
be considered in the design of the detector, the release mechanism, and the capsule
leveling system of the capsule. The complexity of some subsystems can be traded for the
simplicity of other subsystems among those three.

51



THERMAL ANALYSIS/ISSUES

Following the procedure of the STEP project, we have estimated the pressure
requirement inside the detector casing (small vacuum chamber) for keeping the
radiometer effect and the damping due to residual gas to tolerable levels.

Effect of residual gas

A limit on the tolerable pressure difference Ap inside the instrument package can be
obtained by requiring that the acceleration a = AAp/meff produced by the air piston effect
(dc signal) on the surface A of each sensing mass™ be at least three orders of magnitude
smaller than the dynamic range of the differential accelerometer. Consequently, for A =
0.012 m? and m,; = 9 kg, the tolerable pressure difference should be less than 10-? Pa (10°
' mBar).

Radiometer effect

The maximum tolerable pressure is also related to the maximum allowable thermal
gradient through the radiometer effect, i.e., the acceleration produced by gas molecules
emitted from regions with different temperatures [Ref. x]. This effect is likely to produce
an acceleration error modulated at the signal frequency because, as the instrument
package rotates, it could face regions with slightly different temperatures. The
acceleration produced by the radiometer effect is a = p (AT/Ax)/(2pT) [Ref. x] where p is
the pressure, T the temperature and p the density of the sensing mass. For p = 2800
kg/m3 (Aluminum), p = 10" Pa is required for an acceleration error of 10-15 g and a
temperature gradient of 0.2 K/m.

A thermal gradient across the detector also affects the resonant frequencies of the
sensing masses through variations of: the Young's modulus of the material, the geometry
of the torsional springs, and the moments of inertia of the sensing masses. Consequently,
a thermal gradient changes differentially the resonance frequencies of the sensing masses
and ultimately affects the common mode rejection factor.

The common-mode rejection factor is related to the temperature variation AT across
the detector as follows CMRF = |o + 0|AT where o is the thermal expansion coefficient
and o the thermal coefficient of the Young's modulus. For Aluminum at low
temperatures 0. << O.f, O ~ -3.5x10* K'' *" while CMRF is required to be < 10,
Consequently, the tolerable temperature gradient for a 0.4-m-long detector must be
smaller than 0.7 K/m. This value is somewhat less stringent than the tolerable value of
the thermal gradient dictated by the radiometer effect and consequently is superseded by
the previous effect.

Thermal issues and design

Thermal issues, however, are not solved by simply meeting the thermal gradient
requirement and lowering the pressure. The experiment has two cold parts, that is, the
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proof masses plus casing (i.e., the sensor) and the preamplifier and a component at aimost
room temperature (inside its case), that is, the electronics box which includes battery and
various housekeeping functions.

The sensor has negligible thermal dissipation while the preamplifier and electronic
boxes have non-negligible thermal dissipations. We need to evaluate the following: (1)
cooling down time for the sensor and preamplifier before launching the balloon; (2) the
tolerable temperature drifts of the detector, the preamplifier and the electronics during the
measurement phase after release; and (3) the tolerable temperature drifts of the same
units before release during the check out phase.

Experimental data was provided by our partners at IFSI on the power consumption of
the units involved and their sensitivity to temperature variations. Not surprisingly, the
sensor and the preamplifier have the highest temperature sensitivity, of order 10® g/K and
10° g/K, respectively, followed by the electronics which is a few orders of magnitude
less sensitive. If the two sensitivities quoted above are taken at face value, the
temperature variation over the measurement time should be less than 0.1 pK! In reality,
the sensor and preamplifier will be grounded to the cryostat temperature before release
and then they will rely on their own thermal inertia during the 25-30 s measurement
phase. The temperature drift is slow, with a time constant that is typically two orders of
magnitude bigger than the measurement time. Since variations of less than pK are
unrealistic to obtain, the question can be put as follows: how well an acceleration signal
at the expected sensitivity can be extracted from a slow varying background (dependent
on the temperature drifts) which increases by several orders of magnitude over the
measurement time?

Answering this question is important to define more realistic requirements for the
thermal design, in general, and for solving point #2 outlined above, in particular. In order
to answer this question we have investigated techniques of signal extraction from a noisy
signal which also drifts by a very large amount due to temperature variations.

This exercise is not meant to be a comprehensive work on the techniques that will be
adopted for extracting the signal from noise but rather it is limited to the issue described
previously. In summary, we have taken a sample 0.5-Hz signal with a strength of 2x10°
g (at 95% confidence level), added to a random noise with \30x107% g rms and to a
double-exponential (other functions have also been tested) drifting acceleration that
ramps up to an acceleration intensity many orders of magnitude bigger than the signal.
The double exponential (or similar function) represents the different heating rates of the
sensor and the preamplifier with two different time constants TC, and TC, where we have
assumed TC, > TC, to account for the sensor’s bigger thermal inertia We have practiced
a basic technique to extract the signal, without assuming any knowledge of the functional
expression of the thermal drift, for increasing steepness of the thermal ramp (that is the
rates of change of the two temperatures).

Fig. 34 shows a conservative situation in which the thermal-induced acceleration ramps
up to 2x10* g, that is, its maximum value is 7-orders of magnitude bigger than the
expected signal. The signal could be extracted with reasonable ease by detrending the
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signal + noise with a 6-order polynomial and computing the FFT of the detrended signal.
This extraction process would not succeed for much stronger thermal drifts, although no
additional effort was devoted to improving the process because the results obtained were
already satisfactory. After considering these results, we can establish thermal drift
requirements for the relevant units as follows:

Sensor temperature drift: < 0.0067 K/s (i.e., ~0.2 K in 30 s)
(44)
Preamplifier temperature drift: < 0.017 K/s (i.e., ~0.5 Kin 30 s)

For the temperature of the electronic box we can safely assume that it is sufficient to
keep the temperature variation below a few degrees over a 30 s maximum free-fall time.
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Figure 34 Example of extraction of signal from random noise plus a strongly-dominant
slow-drifting acceleration noise (Temp-1 = sensor and Temp-2 = preamplifier).
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Preliminary Thermal Results

There are 3 elements that operate at different internal temperatures in the instrument
package, namely, the detector, the preamplifier and the electronic box. The detector
should be at the lowest possible temperature with an upper limit of 10 K. The Gallium
Arsenide FET preamplifier can operate from low temperature (> 10 K) up to room
temperature with slightly reduced performance at high temperature. The electronic box
must be kept close to room temperature. The three boxes also dissipate different amounts
of power. The power dissipated by the detector W, is in the nW range which is
negligible. The power dissipated by the preamplifier and the electronic box are typically
W, = 100 mW and W, = 500 mW which are both non negligible. A simplified thermal
scheme of the three elements is shown in Fig. 35.

Detector Preamp. Electronics
/W W W3

/
/

I
\ \/
/ \ A%

springs \
m1 case m2 shields

Figure 35 Simplified thermal scheme

A preliminary thermal analysis was carried out by using a finite-difference thermal
analysis code to address the two more critical thermal issues, that is: (a) the cooling down
of the detector and (b) the temperature rise of the preamplifier during the measurement
phase.

Results of the cooling down are shown in Fig. 36 under different assumptions of
radiation and conduction through a cold strap with a conductance of 0.02 W/K
connecting the case of the detector to the cryostat. The most relevant results are those
shown in Fig. 36(a) while Figs. 36(b) and 36(c) represent cases that were run to assess the
relative contributions of radiation and conduction, respectively. As shown by Fig. 36(a)
the cooling time needed, with the cold strap, to reduce the temperature below 10 K is
shorter than a week.
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Figure 36 Temperatures of detector during cool down under various assumptions
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The second critical issue that we addressed is the temperature rise of the preamplifier
during free fall (i.e., the measurement phase). The preamplifier was singled out as more
critical, from the thermal point of view, than the detector because it has high power and
low mass while the detector has negligible power dissipation and higher mass. We
assumed that the preamplifier is at its desired temperature value (between 10-20 K)
before the instrument package release and that a thermal shield is interposed between the
preamplifier box, which is attached to a thermal radiator, and the detector.
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Figure 37 Temperature of preamplifier and thermal shield during free-fall phase

Fig. 37 shows the results for different thicknesses of the thermal radiator. Clearly, in
order to keep the temperature variation below 0.5 K during a 30-s time, a 1-cm (thick) X
20-cm (dia.) radiator is required. Additional thermal analyses will be performed to
compute temperature variations of the three connected boxes and, consequently, define in
more detail the thermal design beyond this preliminary analysis of critical issues.
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CAPSULE/CRYOSTAT DESIGN APPROACH

Introductory Remarks

During the early conceptual development of this experiment, we were focusing our
attention mostly on free-fall spans of a few meters to achieve free-fall time as long as
possible. This situation, however, precluded the use of a fully cryogenic capsule because
of mass considerations and pushed us towards the adoption of a small cryostat at the top
of the vacuum chamber to refrigerate the instrument before release. However, the small
cryostat creates additional problems which are highlighted by the previous analyses as
follows: (1) the small cryostat is a concentrated mass very close to the detector which
produces relatively strong gravity gradients; and (2) the instrument package spends most
of the free-fall time in the vicinity of the small cryostat and distances itself from the small
cryostat only in the later portion of the fall.

Relative distance (m)

Time (s)

Figure 38 Vertical motion of package relative to capsule for 3, = 7000 kg//m* (shown
for distances < 1 m)

Fig. 38 shows clearly that the relative distance between the instrument package and the
capsule (for a typical B, = 7000 kg/m?) is less than 10 cm during the first 14 s, increases
to about 1 m at the 24 s mark and becomes greater than 3 m at the 30 s mark (not shown
in the figure). In other words, the small cryostat can not be small either from the point of
view of reducing the self-generated gravity gradients and also for allowing for lateral
motions of the capsule with respect to the falling package. The free fall time (once
several seconds are spent in attenuating the initial transient motion of the sensing masses-
after release) affects the experiment accuracy only through its square root (i.e., a weak
function). Consequently, it is sensible to sacrifice a few seconds of free-fall time in order
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to make the experimental area sufficiently short to open up the option of a fully cryogenic
vacuum chamber for the detector to fall in.

These considerations are formalized in the next section by developing an optimization
process aimed at identifying the size and mass of the experimental chamber and the
capsule.

Optimization of Capsule Size and Mass

A design optimization would appear premature at this point of the flight definition study.
This optimization process, however, is aimed exclusively at evaluating consistently the
size of the capsule and its overall mass. The goal of the optimization process is to devise
a mathematical formulation for evaluating capsule sizes and masses that satisfy: (D
geometrical/dynamical constraints and (2) engineering constraints. The first category
includes the constraints determined by the strength of the gravity gradient inside the
vacuum chamber (generated by the capsule mass itself) and from the motion of the
instrument package with respect to the capsule during free fall. The second category
includes size constraint due to transportability and handling of the capsule and also
minimum and maximum allowable mass. The minimum mass is related to the ability of
building a vacuum chamber that does not buckle under the atmospheric pressure while
the maximum mass is limited by the carrying capacity of the helium balloon.

The independent variables to work with (as it will become clearer in the following) are
the (frontal) low-speed ballistic coefficient of the capsule and the free-fall time. The
output variables are the capsule diameter and related capsule length, free-fall span,
cryostat mass, and capsule mass.

In more detail, we first need an expression of the free-fall span of the package inside the
capsule as a function of the ballistic coefficient B, and the free-fall time T;. The free-fall
distances were derived numerically because the relevant functions are not integrable.
Consequently, we have to fit the numerically-derived function over the two parameter
space (B, T;). The fitting was done successfully over the range of interest of the
parameters by starting from the analytical formulation that approximates the solution for
a constant ballistic coefficient and then evaluating the fitting coefficients for the general
case with variable Cp,. The two-parameter fitting process yields:

7= an" exp(chz)/ﬁ0 (45)

where a = 0.149636, b = 3.084, and ¢ = 0.001692 are the fitting parameters. The results
are accurate within a few percent for ballistic coefficients varying from 2000 kg/m® to
20000 kg/m* and free-fall times from 0 to 30 s.

The free fall vertical distance readily determines the minimum length of the
experimental chamber which must at least equal the free-fall span plus the vertical size
(outer diameter) of the instrument package, that is:

L. =Mz;+D (46)



where D is the outer diameter of the instrument package and 1 is a safety coefficient
(typically equal to 1.5) that takes into account the uncertainties in estimating the drag
deceleration due to the rarefied atmosphere.

The next step is to evaluate the minimum internal diameter of the chamber/cryostat
that can accommodate the lateral and attitude dynamic of the capsule and also provide
low values of the gravity gradients along the free-fall trajectory. In order to keep the
equations manageable we adopt for this analysis the constant stand-off distances which
were derived previously and boundary values for the capsule attitude dynamics, rather
than using integration of capsule dynamics and on-line numerical computations of the
gravity-gradient field (as done in the previous section). The goal is to compute a
minimum value of the internal diameter and external diameter (where the two are related
through the cryostat thickness) that keep the free-falling package close to the capsule
center-line (far away from the cryostat walls) under the action of a maximum wind shear
and for reasonable assumptions about the capsule attitude (pitch or roll) dynamics during
the fall. The point above can be translated into the following equation for the external
capsule diameter:

Drcr:; = z(ypirrh + Y shear + ygg + y‘")’”) (47)

Yoien = Z8in(0,,,) where z; is given by eqn. (45) and 8, can be interpreted as either a
limit value of the maximum pitch motion of an uncontrolled capsule or a requirement
imposed on the control system of the capsule attitude during the fall. The lateral
displacement due to wind shear yg ... =f(B,, T;) is given by eqn. (10) while y,, is the
thickness of the cryostat wall of 10-15 cm (i.e., typical values for large-size helium
cryostats). The stand-off distance y,, is the upper bound of the minimum distance
between the detector CM and the heavy walls of the cryostat that defines an area
(cylindrical and centered at the cryostat center-line) where the gravity gradients generated
by the cryostat are sufficiently low. An upper bound of 0.4 m can be adopted across a
variety of cylindrical cryostats for sizes and masses of interest to this project.

One obvious consideration is that the internal diameter must be large enough to contain
the instrument package. This constraint, however, is already accounted for by the fact
that 2y,, > w, where w; is the width of the instrument package that is presently estimated
at about 40 cm. The overall length of the capsule is related to the external diameter
through the fineness ratio that, as explained previously, needs to be about 1:4 in order to
keep low the value of the drag coefficient, especially in the compressible flow regime.

The next step is to estimate the minimum mass required for the cryostat. Most of the
cryostat mass is for the metal of the vacuum chamber that has to withstand the external
atmospheric pressure (at ground level). From engineering formulas for the buckling of
cylindrical vacuum chambers we obtain that the critical thickness of the vacuum chamber
walls (at buckling) is given by:

1
Sori {pe(L/R) 25 48)
R 092F
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where R and L are the radius and length of the vacuum chamber, s,,, is the (minimum)
thickness of the load-bearing shell, E is the Young’s modulus of the material and p, the
external pressure. The cryostat length is readily computed as:

L = nsz + 2ygg (49)
The minimum cryostat mass is then computed as follows:

MDn =vs. ipD(D/k+ L) (50)
where p is the density of the material, D the cryostat average diameter, Vv is a load safety
factor and k is a shape factor that is equal 2 for flat cryostat caps and 1 for hemispherical
caps. After adopting v = 3 and eqn. (48) to compute the thickness, we find that eqn. (50)
provides masses which are in line with actual values of large cryostats (as verified with
Janis Research). Since the cryostat is the heaviest component of the capsule, we can
estimate the overall (minimum) mass M, of the capsule as a proportion of the cryostat
mass M = yM

cryo’

The actual mass of the capsule M, however, is defined by the ballistic coefficient Bo
once the external diameter of the capsule is determined as follows:

M = [,CphA (51)
where A is the frontal area of the capsule computed through eqn. (47).

Consequently, we must verify that M > M. If the inequality is true we can simply
add ballast to the capsule in order to preserve the values of the geometrical variables and
meet the actual mass requirement. In this case, the vacuum chamber of the ballasted
capsule will satisfy the strength requirements captured by eqn. (48). If the inequality is
violated, the total mass determined by the ballistic coefficient is too small to build a
cryostat that is strong enough to withstand the atmospheric pressure. The violation of
this inequality will be dealt with in the optimization process as a (strong) penalty on the
cost function as explained later on.

Fig. 39 shows an example of a contour plot of two of the key output variables, that is,
the capsule mass and the capsule external diameter vs. the low-speed ballistic coefficient
and the free-fall time for realistic values of parameters.
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Figure 39 Contour plot with grid lines showing capsule mass and external diameter vs.
low-speed ballistic coefficient and free-fall time.

The goal of the optimization process is to define the size and mass of the capsule that
minimize the value of a cost function. The cost function consists of the overall capsule
mass, the capsule diameter (which is related to the overall capsule length), and the free-
fall time. The cost function for this optimization problem can be expressed (and the
choice is not uniquely defined) as follows:

CF = alﬁfwtzp’” + By + By with 1y # 1y, e
£ *min

where M and D_,, are the overall mass and external diameter of the capsule, z, is the free-
fall span inside the capsule (which defines the cryostat length), t.;, the minimum desired
free-fall time, t;the free-fall time, a, and a, are weighting coefficients and Py, and Py, are
penalty functions. Py, is the penalty function for the total mass and Py, for the external
diameter.

The structure of the cost function is readily understood after considering that the
experiment accuracy depends on the square root of the integration time. The minimum
free-fall time has to include the time required to damp initial transients (a few seconds)
and also a minimum number of cycles needed for a reliable extraction of the signal from
noise. The weighting coefficients adjust the relevant weights of the two quantities at the
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numerator by making them comparable and/or making one component more important
than the other one. By adopting meters for the units of length and metric tons for the
units of mass, the two weighting coefficients have the same order of magnitude.

Going back to the penalty functions, obviously the overall mass of the capsule must be
greater than the minimum (or critical) mass M determined previously and smaller than
the maximum mass M, ., than a reasonable size balloon can carry to an altitude of 40 km.
Note that M,,, is a fixed value while the critical mass depends upon the optimization
parameters.

In a similar manner, the external diameter (which also determines the overall length of
the capsule according to L, = D,,/8) must be large enough to accommodate the
instrument package plus the cryostat walls (i.e., larger than D,,;,) and smaller than a
maximum value D_,,. In this case both values are fixed and moreover the first inequality
(larger than) is superseded by eqn. (47) if 2y, > W;.

The penalty functions are bowl-shaped functions which are equal to zero for values
within the two boundaries of the inequality and whose value rapidly increases as the input
variable approaches the boundary values. Fig. 40 shows the mass penalty function for
two values of M, = 0.3 ton and 1.0 ton, respectively, and M, = 2.2 tons. The
maximum value of the penalty function is quite arbitrary. It simply needs to be quite a bit
larger than the expected range of values of the first term that appears on the right hand
side of the cost function in eqn. (52).

Penalty function

Mass (ton}

Figure 40 Example of mass penalty function with M, = 0.3 ton and 1.0 ton, and
M.« = 2.2 ton.

max

A similar penalty function with fixed-valued left and right boundaries was derived to
penalize the external diameter of the capsule. Without going into excessive details, the
penalty functions are obtained from a pair of exponential functions with a set of
parameters and power exponents that shapes the function appropriately.
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Optimization Results

The optimization routine has been exercised for a large number of cases in order to
inspect the influence of any given input parameter on the output/design parameters and
the cost function. In the following we will show only the most important results relevant
to: (a) a cryostat made of Aluminum and (b) a cryostat made of Steel. The numerical
parameters adopted for computing the results shown in Figs. (38) and (39) are as follows:
instrument package width w, = 40 cm; low-speed drag coefficient of the capsule Cp, =
0.1; fineness ratio of the capsule 8 = 0.25; wind shear = 0.005 m-s'/m; wall thickness of
cryostat = 15 cm; stand-off distance for reducing gravity gradients y, = 40 cm;
uncertainty factor on drag deceleration 11 = 1.5; strength safety factor for vacuum
chamber v = 3; mass ratio capsule-mass/cryostat-mass y = 2; density of material p = 2800
kg/m® (Aluminum) and 7800 kg/m* (Steel); Young’s modulus E = 80 GPa (Aluminum)
and 200 GPa (Steel). Moreover, the maximum capsule mass for a mass penalty in the cost
function is equal to M, = 2200 kg. The maximum external diameter of the capsule for a
penalty is D,,, = 2.2 m (which implies a maximum capsule length of 8.8 m). The weight
coefficients have been as follows: a, = 1 (mass) and a, = 1.5 (external diameter) in which
masses are expressed in metric tons and diameters in meters. More weight has been
given to the diameter rather than to the total mass because as it will be seen later on there
is a fairly large mass margin (large balloons can carry a few tons) while a large external
diameter leads to long capsules that are difficult to handle and transport.

In Figs. 41 and 42, the value of the cost function is shown as black contour lines and
the contour regions are colored with the deep blue color corresponding to the minimum
of the cost function. The grid lines of the free-fall span are also added to the figures in
green color. The figures provide a host of useful information as the grid lines specify the
values of key variables such as capsule mass, external diameter, and free-fall span (of the
instrument package inside the capsule) for any point identified by the coordinate B3, and t;.
The equations shown previously then enable us to compute readily other key design
parameters: the cryostat length L from eqn. (49) and its mass by dividing the capsule
mass by y.

Fig. 38 shows the results for a cryostat made of Aluminum and Fig. 39 for a Steel
cryostat. The cost function identifies the area on which to focus the selection of the key
design parameters. In the (desirable) deep blue area (inside the smallest circular contour
lines) the cost function is rather shallow and, consequently, the region for selecting the
design parameters is reasonably large. In the dark color region, one of the mass or
geometrical constraints has been violated and consequently the penalty functions bound
the design area. Note that the maximum capsule mass limits the design area on the
right-hand side of the plots while the (critical) cryostat mass and the maximum external
diameter of the capsule limit the design area on the left side of the plots. In the Steel-
cryostat case the (critical) cryostat mass is the leading boundary condition on the left side
of the design area. In the lower side of the plot, the design area is limited by the
minimum free fall time that has been set equal to 15 s in order to allow for a reasonable
numbers of signal cycles.
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Figure 41 Cost function in the capsule parameter space (Aluminum cryostat)

The figures show that an external diameter in the neighborhood of 1.4 m is a valid
selection for the capsule based on the assumptions of this analysis. The 1.4-m diameter
~ontour line cuts across the region of the minimum value of the cost function.
Furthermore, the minimum-value region is larger for an Aluminum cryostat than for a
Steel cryostat because in the latter case the boundary of the minimum (and critical)
cryostat mass encroaches into the low-valued area of the cost function. Consequently,
Aluminum is preferable to Steel as it allows wider margins to work with in the capsule
design. After focusing on Figure 41, an “optimal” design choice could be an external
capsule diameter of 1.4 m (with an overall capsule length of 5.6 m). The overall capsule
mass could start at a minimum value of about a 1000 kg which provides a free fall time of
23.5's. Note from the figures that the free-fall span contour line is about parallel to the
1.4-m external diameter line. This situation implies that we could move the design point
along those two lines by increasing (with ballast) the capsule mass and increasing the
free-fall time. Consequently, a cryostat of given length (see eqn. (49)) can provide longer
free fall times by simply making the capsule heavier with ballast. The free-fall time can
be increased by 1 s for every 250-kg ballast (or other equipment) added to the capsule up
to the point where the upper mass limit is reached. The low-speed ballistic coefficient B,
of the capsule will vary from about 6500 kg/m” for a capsule mass = 1000 kg to 13,000
kg/m” for a capsule mass of 2000 kg.
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Figure 42 Cost function in the capsule parameter space (Steel cryostat)

This “design concept” optimization does not intend to exhaust the design option for
the capsule which will have to be revisited many times before the design is frozen based
on additional system analyses. However, this process is a valid starting point to provide
preliminary numbers for the analysis to be conducted by our cryostat subcontractor Janis
Rescarch. The optimization process also provides a framework that lends itself to future
refinements for evaluating system design parameters vis a vis performance input
requirements and engineering constraints.
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REQUIREMENTS DEVELOPMENT

n Drivers (version #1)

Table 1 Development of Requirements vs. Desi

Science- - Engineering Requirements
Design Driver originated Reqmt.
Tolerable Detector/_ |  Cryostat | Drop System
differential Package
acceleration o
Free-fall (time > 20 s) N/A Transient Limit LHe B, > 5000 kg/m’
damping time sloshing in0 g
<5s
Amplifier noise (white) <6x10°"° gf\,;I; Preamp. N/A N/A
Ty < 60 mK
proof mass > Skg _
Brownian noise (white) <6x10°13 g/‘\/—I; wy/Q < 21/10° LHe cryostat N/A
rad/s High-Q proof
T<I10K Masses
Viscous drag on proof <10"g ps < 10° mBar N/A N/A
masses (dc)
Temperature gradients <5x10™g AT/Ax <0.1 K/m | T uniformity N/A
[Radiometer effect, (w)] inside cryostat
Acceleration noise inside <10%g CMRF < 10* p. < 10° mBar Structural and
capsule in free fall attitude
fregs. >> w
Earth’s gravity gradients <10 g Qw) Requires N/A Verticality before
< 10" g(w) centering of release
proof masses (5,) 5,0 <0.1 pm-deg
along spin axis
Cryostat’s gravity < 10" g 2w) Centering of Cryostat internal N/A
gradients < 10" g (w) proof masses dia.>1m
(distributed mass) within 10 um
Gravity gradients of lump <10 g Q) Centering of N/A Mass-distance
masses on board capsule <107 g (w) proof masses exclusion zones
within 10 um (see Fig. 33)
Magnetic disturbances <10t6g Use Niobium Temperature of Limit magnetic
alloy blanket package moments outside
around detector. T<Tc sensor package
Degauss proof (T, = critical M, < TBD A-m’
masses temperature) andr>TBD m
Higher-order mass <10 g Evaluate regm. | Evaluate effect of N/A
moments on cylindrical distributed mass
symmetry of of cryostat
SEnsing masses
Centrifugal gradients due <10Pg Evaluate reqm. N/A Evaluate reqmts.

to skewed rotation axis

on centering of
proof masses

on leveling and
release
mechanisms

o = signal angular frequency; o, = detector resonant angular frequency
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Table 1 shows key requirements of major subsystems that have been identified thus
far or that will be evaluated during the next year research activity. Table 1 is a work in
progress (presently version #1) which will evolve over the duration of the definition

study.
UPDATED REFERENCE CONFIGURATION

One of the important results of the analysis carried out is that the small vacuum
chamber at the top of the capsule has been eliminated in favor of a fully cryogenic
vacuum chamber (see Fig. 43). The new solution eliminates the problem of the gravity
gradient produced by the small cryostat in the proximity of the detector and also provides
more clearance to the instrument package during the early stage of free fall.

e —
o

Figure 43 Sketch of new reference configuration of capsule.

The new configuration also has the advantage of using a conventional design of the
cryostat rather than a custom made one with doors opening at the bottom as in the
previous reference design.
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A preferred size of the vacuum chamber has also been identified as a cylinder of 1.2-
m diameter and 2.3-m length which results in an external diameter for the capsule of
about 1.4 m. Preliminary data on large cryostats (from Janis Research), indicate that the
mass of a cryostat of the size considered above will fit well within the mass limit of the
system. Such chamber/cryostat will allow free fall times in the range 23-27 s depending
on the amount of ballast added to the capsule.

The preliminary results of the thermal analysis also brought changes to the reference
design of the instrument package. The preamplifier has been moved close to the sensor
and the electronic box is placed farther away from the sensor. These two boxes are
mounted on the longitudinal axis of the instrument package (see Fig. 44) instead of
placing them on a Saturn-like ring that was more strongly thermally coupled to the
sensor. The boxes are thermally weakly linked to one another thanks to thermal shields,
interposed among them, which through radiation reduce the heat exchanges. The
preamplifier and electronic boxes are mirrored on the opposite side of the sensor by
equal-mass dummy boxes for dynamic balancing.

Figure 44 Schematic of instrument package with sensor cut up and electronic boxes.

The reference design will evolve as more analysis is conducted on a number of issues
that can potentially affect the system conceptual design and ultimately the experiment
performance. The last section of this report summarizes critical areas to be investigated
during the next year of activity on this project.
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THEORETICAL IMPACTS

Contribution of Parity Non-conserving Weak Interactions

Introduction

A theoretical question that we sought to address can be simply stated: What is the
contribution to the mass-energy of each material due to the parity non conserving part of
the weak interaction? The reason that we sought an answer to this question was to find
out if our experiment would be sensitive enough to determine whether or not this
contribution obeys the weak principle of equivalence.

Unfortunately, the present level of development of physics does not allow us to
address our question reliably. Knowledge of the physics of nuclear matter is too
primitive. We have therefore had to make a number of "reasonable,” but nonetheless
somewhat arbitrary, assumptions to carry out the calculations. The discussion below
mentions each of these assumptions. The results of the calculations indicate that our
experiment will not be sensitive to the contribution to mass-energy of the parity non
conserving part of the weak interaction.

Evaluation_of contribution

The materials to be compared in the experiment should have binding energies stored
in forms which are as different as possible. For example, if gravity couples differently to
protons and neutrons, we should compare elements with different proton to neutron
ratios. A new long range force could also be detected by comparing such elements. A
force coupling to baryon number would cause an acceleration proportional to the total
number of protons and neutrons divided by the mass, or for a single nucleus, to

m, —m
(Z+N)/(m, Z + m, N)~1/mN(l-(——p—32x). Here x is the ratio Z/A and Z, N and A are

N
the number of protons, neutrons, and combined nucleons. The mass myis used for the
common mass of protons and neutrons. In order to observe this effect, it is best to
compare heavy elements with x~1/3 to light elements with x~1/2.

As we will see below, the energy of a nucleus can depend very sensitively on the
wave functions of the protons and neutrons. We will discuss a force coupling to the
product of proton and neutron densities. Such a force is more significant for nuclei in
which proton and neutron wave functions have greater overlaps. This suggests choosing
a nucleus with a magic number to compare to a less stable nucleus. The filled shell
structure of a nucleus with a magic number may imply greater overlap of the wave
functions of the protons and neutrons.
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Suppose gravity couples differently to the energy produced by the parity violating
part of the weak force. We must calculate what fraction of a nucleus’s energy is stored in
this form, although we will see that it is not very well defined. First of all, right-handed
neutrinos do not appear to exist, so it is not just the weak force which violates parity. The
model used in Ref " to calculate the total weak force energy of a nucleus is a current-
current interaction. To discuss this, let us consider the Lagrangian for the interaction of

the weak force with quarks and leptons. Schematically, it is 4, (J¥+J*"), where J and

J, are the weak vector and axial currents, and A is the field of the weak force. (This
expression must be summed over the three types of W particles; this formula ignores the
fact that the observed W and Z particles are actually linear combinations of these three
fields with a fourth field.) By including both terms, we ensure that the coupling to right-
handed particles cancels. The first term here is the parity violating term. However, if we
use a contact interaction, taking into account the large mass of the W particles, we find an

interaction of the form L, =(J, +J,)(J* +J°*). Multiplying this out, we get four

terms—only the terms coupling the axial current to the vector current seem to violate
parity in this description of the weak force. Another difficulty is that the separate vector
and axial currents are not actually well defined if right-handed neutrinos do not exist.

Since the parity conserving parts of L. contribute one part in 10® to the mass of a
nucleus, current limits imply that gravity’s coupling to these terms must differ by less
than 10" from its coupling to other matter. The parity violating terms of L., contribute
much less to the mass of a nucleus. If |i> is the state of the nucleus with weak forces

neglect, then the first order perturbation of its energy due to these terms is <i|J*J Z li>,

which vanishes by symmetry. (|i> is a parity eigenstate, so the operator changes its parity,
and gives a state orthogonal to <i|.) This ensures that the contribution of the parity
violating terms is second order in perturbation theory, and therefore small enough to be
unconstrained by previous experiments. However, L. is only useful for calculations. It
would be strange for gravity to couple differently to the parity violating part of the weak

force unless it coupled differently to J,iA“ in the original Lagrangian. In this case

J jJ * would also couple differently to gravity, and this would be a much larger effect.

While we are deciding which terms of the effective Lagrangian will be considered
to be parity violating, we should notice that there are other parity violating interactions
involving pion exchange™™™. Ref. xxiv probably overestimated the contribution of

J,J* to the weak energy of a nucleus, because of the assumption that the nucleons are

distributed independently of one another in a nucleus. In fact, protons and neutrons are
generally not closer to one another than their radius of 10"° m, or (160 MeV)!' as
compared to the range 1 GeV! of the weak force. Thus, the weak interaction of nucleons
occurs only very rarely. The pion exchange force has a range larger than the size of a
nucleon, so the assumption that nucleons are independently distributed is more accurate
when considering this force.

The interaction between nucleons and pions is described by the Lagrangian
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Ly = —igmn ;’\_/]/51"'-7'277\/’ -5/ ﬁ(fXﬁLN

(Ref xxv) where we have used isospin notation, so that N is an isospinor of proton and

. Py .. . . ~ . .
neutron fields: N=[ J, 7 is a vector of three Pauli matrices, and 77 is the vector of pion
n

, ) _ nt+mT nt-m , _
fields, which are usually written as ( S ,7°). The first term in the
’ N R

Lagrangian represents pion exchange due to the strong force ( g, =13.45), the second to
the weak force (f, =4.54x1077). This term violates parity. We will calculate
contributions to the energy of a nucleus arising from this term.

Any interaction in which a light particle like the pion is exchanged can be
approximated by interaction potentials. For example, we begin with a simplified model
of spin zero protons and neutrons which can exchange a neutral spin O pion (of mass m,).
Let the interaction Hamiltonian be g(n'n+p'p)n. Then the amplitude for pion emission is
—ig. Let us calculate the potential acting between protons and neutrons. The Feynman

diagram is:
| a
v T
’, /p/\ ’,
i g’
. . . . . _ . 2 —
The amplitude associated with this is 4 = L(-ig) > == —.  We have

q°—-m, g - +m,
omitted the time-like component of g, since this is the energy transferred between the
nucleons, and is small compared to the momentum in the non-relativistic limit.

Compare this to the calculation of scattering under the influence of a potential V.

(P Ta+ P2 Fy) i(Py P+ Py Tp)

Let the initial and final states be >= ——— and >= ——_ Intime

independent perturbation theory, we solve for the coefficient

¢, =< f|T(~e0,0)| i >= j<f] Viise W ar—2= 5y 2n§(E, - E,) .

It is not hard to check that ¥ = t5zs-8 (D1 + P2 = P3 ~ P4 )IdBJ_C'V(f)eﬁf :

73



The Feynman amplitude is closely related to this coefficient; however, it is
calculated with the wave functions normalized so  that

<pips I PPy >= 4E,E,(2m)'8(p, — P;)6(Py — Pa) = 4m~'2(2”)65(ﬁ1 ~ P3)8(Py —Py)
Thus we must multiply our value for ¢; by 4mN2(27r)6. The relationship between ¢, and
A 1s thus

i4(27)* 8 (E, + E, — E, — E;)8 (P, + P, — By — Bs) = 4m," 2m)°c, .
Therefore

A= —4mN2iJ V(%)e"d*% , and the inverse Fourier transform of this gives V. We find

2 —mg|¥|
~ —-ge . . . )
that V' (x) = —g—z———_—, where the transform is evaluated using spherical coordinates.
(4my")4m | X |

This is the Yukawa potential, but it is not actually the true interaction potential of the

protons and neutrons, since protons and neutrons really have spin 1/2, and have axial
couplings to the pions.

Expanding the Hamiltonian given above, we find the parity conserving and parity
violating pion-nucleon interactions

Hpe = igﬂNNJ'd35c’(17}/5p~ﬁ)/5n)7T° +\/_2_(17Y5”77+ +AYpR)
and

H, = i’ﬁjd%?pmr* -Apn”

The m’s are pseudoscalar particles and py,p and similar terms are scalars, and so it is the

first of these interactions which is parity conserving. This is actually a convention, since
if the second interaction had been discovered first, the pions would have been called
scalar particles. A consequence is that an interaction between nucleons by exchange of
pions is equivalent to a parity conserving potential as long as both pion-nucleon vertices
are governed by the same interaction. If the pion is emitted according to the parity
conserving interaction and absorbed according to the parity violating interaction, then the
equivalent potential distinguishes between left and right. We call the three potentials

V

PCPC>
violating or parity conserving).

V

PVPY

e

vpc » Where the subscripts indicate the nature of the pion exchanges (parity
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Since the PVPV interaction is mediated only by charged pions, the only possible
interaction is the above. The proton turns into a neutron when it emits the 7" in order to
conserve charge. The calculation of the potential associated with this interaction is very
similar to the calculation above for the simplified model. There are two differences.
First, the extra factors proportional to the mass which arise from normalization
conventions do not occur for spinors. Second, since the proton and neutron have two
spin states, we must determine how the interactions affect their spins. Since the pions are
spinless, a nucleon’s spin does not flip when it emits a pion. Thus if the proton initially
has spin up and the neutron is spin down, then the scattered proton has spin down and the
scattered neutron has spin up. The effective potential for this interaction is

2 em iR
Vr-r)= Jx X , where X is an operator which turns protons into neutrons

2 An|r -1
and neutrons into protons.

Since particles can change types, we will use second quantization. The operator
n; (7)p,(F)+n, (F)p,(#) turns a proton at point r, into a neutron at the same point
with the same spin.  So the operator X is equal to
[ pT (Fny () + pl (), (F) 1t (7)) p: (7)) + ml (7)) p, () 1

The interaction Hamiltonian is therefore

—my|R-hl

HPVPV = _J‘J‘d};‘;d%-;z 'QL,:'I_’_;—_"’_‘T']'[P; (A )nT (r)+ PI (;l)n¢(;1 ) ][n$ (FZ)PT () + ”I(Fz)Pl(Fz) I
i 2

This interaction does not seem to mediate a force between two separated
nucleons, since the nucleons can’t retain their identity. In particular, it cannot mediate a
force between two separate nuclei, even though it does contribute to the binding energy
of a single nucleus. Suppose the nucleus can be modeled as consisting of two Fermi seas,
one of protons and one of neutrons. (Of course .-, which is much larger than any

parity violating interactions, produces correlations in nuclei.) There are protons of both
spins and of every momentum less than k,, and there are neutrons up to k,. We will
assume the nucleus is very large so that we can approximate the waves by plane waves,
and we will calculate the energy density due to H,,,. Then since the proton and
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neutron which interact are in the same nucleus, the interaction does not change the
nucleus type.

The energy shift is <i| Hp,,, |i>. Consider the action of H,,,; on the Fermi sea.

It acts on two particles—a proton of momentum I;l and a neutron of momentum £, ,
changing their momentum and interchanging their particle types. Since the resulting state
is multiplied by <i|, it must have the same occupied states as |i> in order to give a nonzero
contribution to the energy. Thus the final proton must have the same momentum as the
initial proton, as in the following diagram:

proton proton
k k
1 1
neutron / neutron
k k
2 2

Also, the particles must have the same spin, since the interaction does not flip spin.

In order to see at least one failure of our approximations, we consider two general
wave functions for a proton and neutron and calculate their interaction in these states.
We ignore the spin wave function, and set

v >= £ (fi)LE pr>- L)L) np>).

The wave function here is antisymmetric in space and isospin, according to the Pauli
exclusion principle for multiple types of fermions. Thus neither F, nor 7, is the
coordinate of the proton. But f, must be the wave function of the proton. Assuming both
spins are up,

Hpppy LW >= —;%J.J‘V(}l -X, )daixd3fzp}'(’_‘1)"7(31)n¥(fz)PT(§2)[ﬁ(ﬁ ) f2(B) | pn > = f,(7) i(R) | np >]
= -z—fj;-[V(r'z ~RAGE LE) p > =V (FE = R) LA pr>])-
In evaluating the integrals, we must choose % and%, to coincide with 7 and 7 in one

order, so that % represents the location of the initial neutron. Now, noticing that
<pn|pn>=<np|np>=1 while <pn|np>=<np|pn>=0, we obtain

<V | Hopy 10 >= B [[ 5050 G -RUAGRY G AEAER)+ A AG) ADLSE)

1.2
=73

[[@%d 1 G -RARY AEIAE A
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where the two terms can be combined by exchanging # and 7, in the second term.

This has the form of an exchange force—notice that if f, and f, are never nonzero at the
same point, then the integrand vanishes. This is why we claimed above that the shell
structure might affect the parity violating energy; a simple form with plane wave states
ignores all the structure of the nucleus.

In order to find the total energy, we must sum over all occupied proton and
neutron states f, and f, respectively. There is also a self-interaction due to H ;- in which
a nucleon changes type and then changes back. This gives an infinite contribution to the
energy, and is also more significant because a particle is certain to be at the same location
as itself, so the comment about overlap at the end of the last paragraph doesn’t apply.
We will discuss self-energy contributions at the end.

-m R -Fl
Substituting V(r, —7,) = -};I_——_—— and plane waves which are normalized so that their
F=7
integral over the volume V of the nucleus is 1, we obtain an energy proportional to the
Fourier transform of the Yukawa potential. It is equal to

1 1
W om +k —k, |

<Hpppy >= , and the sum over all pairs of nucleons is

kyl<k,, lkyl<k, Mg

where the factor of 2 arises because the proton and neutron can be both spin up or both
spin down. Converting the sum to an integral in the usual way, we obtain

___f,,2 V )? J' J' d3/ad3/€2

7 3 2 r o2
Vo (2n) <k, ey l<k, T +k =k, |

First integrate over ];2 , taking the z-axis along ];1»

J- ~ 1 “ T sin 040
k mt+k*+k,’ —2kk,cos
In(m,” +k,* +k,° =2k k, cos0)
2k k,
mrr2 +(k, +k2)2
m "+ (k k)’

o

0
kn
=2 | k,’dk,
0

kﬂ
= [ 1-dk, In( )
0
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We now integrate over the direction of El, giving a factor of 4m, and then give the
expression for the integral:

m_*+(k +k,)’
m_+(k, —k,)

4

5EPV - fnz
V

)

4

kf kj dk,dk,k,k, In(
0 0

167
—_ fnz n1n4 ]ln(mnz +(kl +k2)2
24 m_*+(k —k,)

k,—k
+ 2’:“ (k,’ -k, )arctan L—=

n mTt

(1K, =k, +4m (e, + k) +

8

)

" 16n?

) k +k,
- ’;1" (kp3+kn3)arctan £

m

m 'k k,
- ——6”—+ Lk ok, (k, +k,))

The integral is evaluated by repeated integrations by parts.

We would now like to evaluate this expression as a function of x = Z/A. The
volume of a nucleus is proportional to A; that is, each nucleon occupies a fixed volume.

. . 3 - .
The volume is given by 37,4 where 1,=1.2 fm™". As usual, the Fermi momenta are

given by k,=(7'n,)" where n, is the proton number density, so
k,=+3Fx= 3203/x MeV and similarly k, =320y1-x MeV . Furthermore, the mass

of a nucleus is roughly Amy, so

4 3
Ok __V OF,y _ 3™ 6EI;’"=(1.OxlO_°MeV‘4)§%i. (Notice that our

M  Am, V my,
estimates, for x = 1/2, give a Fermi momentum of 250 MeV, which is somewhat small
compared to the nucleon mass, so our nonrelativistic approximations (in particular,
neglecting the time-like component of q in the derivation of the effective interaction)
seem reasonable.) '

The following figure shows 532;"’ as a function of x; it is on the order of 10" and

is almost exactly equal to % =9x(1- x)x 107'¢, which is much easier to interpret than

the formula given above; for a contact force, the number of interactions occurring in the
nucleus is proportional to the product of the densities, which is proportional to x(1-x).
(The suggested derivation of this formula—assume the mass of the pion is very large and
replace the interaction by a contact interaction—gives an incorrect answer,

30x(1-x)x107'*. The mass of the pion is not large enough to regard V,y as a contact
interaction.)
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The fraction we have just calculated is very small, and (since we can only
compare different nuclei) its variation from nucleus to nucleus is even less--2x10", if x
varies from 1/2 to 1/3. There are similar smooth empirical formulae for the total mass of
a nucleus, but the mass differences are somewhat larger from nucleus to nucleus because
the mass depends in a more jagged way on the atomic number. Thus, the plane wave
description of the protons and neutrons cannot suggest which nuclei have unusually large
or unusually small contributions from the weak force. There are many other
contributions to the parity violating energy as well—for example, the interaction Vpcpy
produces an energy shift at second order in perturbation theory. This can occur only at
second order because <i| Vpcpy|i> vanishes—after all, |i> is a parity eigenstate since the
strong forces which determine the structure of the unperturbed nucleus are parity
conserving. However, by introducing an intermediate state of opposite parity and very
similar energy, one can hope to obtain the largest possible weak parity violating

contribution to the energy. For "°F, Ref ™ estimates —Z-=7x10"", which is ver
&y M /

similar to what we obtained above. Ref. xxviii did not calculate the matrix elements from
the theoretical formula for V,cpy but from an experiment mentioned in Ref xxv. The
latter reference also calculated the matrix element from a theory based on exchange of
pions and other particles, giving a value which was off by only 20%.)

Ref xxviii's calculation did not take the direct exchange of single pions in which
both the emitted and absorbed pion have parity violating interactions, leading to an
impression that only nuclei with narrowly separated partners of opposite parity have large

OF,, ) : . . .
values of A; However it leads to a very clear case in which one expects a jump in the
parity violating energy—choose a nucleus [i> which is close in energy to another nucleus
i’> with the opposite parity. Fluorine is not the only choice. If one were to calculate the
matrix element of Vo between these states theoretically (the calculation would be

similar to the above), one would find that <7 | Vpcpy |7>0< volume o< M Thus,
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denominator (with energy replaced by mass). (M is either of the two masses.) So we
expect an especially large parity violating energy if the mass difference of the nucleus

and its excited state is small compared to the mass of the nucleus.

, where the denominator here is just the energy

Finally, Ref. ™ calculates the weak-force self-energy of a proton or neutron and
finds that its fractional contribution to the mass of a nucleus is 10 times larger than the
energy from the interactions of different protons and neutrons in the nucleus calculated in
Ref. xxiv. Most likely, the parity violating self-energy of the protons and neutrons is
more significant than anything we have already calculated. This returns to one of the
most obvious models for equivalence principle violations—assume that gravity couples
differently to protons and neutrons. This gives gravitational mass differences which are
linear in x (just as we found in the model of a long range force coupled to the total
number of baryons in a nucleus). So a simple approach is to choose nuclei with the

largest and smallest possible values of x. (Hydrogen and Uranium are suggested in Ref.
XXX!)

There are three reasons why it is unlikely that gravity couples differently to the
“parity violating part of the weak force.” First, this depends on whether one uses the
fundamental Lagrangian or the current-current Lagrangian as discussed above. In
practice, the definition of the parity violating and parity conserving energies is very
technical—a summary of the definition we used is “it is the part of the weak force which
is second order in perturbation theory.” Second, in the electroweak theory, photons are
linear combinations of a W particle and another gauge particle, so if gravity couples
differently to the W particles, it probably couples differently to the photon as well. Third,
all self-energies are infinite in any case. This is why the self-energy of the protons and
neutrons calculated in Ref. xxix is much larger than the energies of the nuclei calculated
in Ref. xxiv. The interactions of the quarks inside the protons and neutrons are larger
than the interaction energies of different protons and neutrons because the quarks are
closer together. If the quarks are point particles, then they contribute infinite self-
energies due to the weak force besides these other energies. Fourth, energy cannot be
separated into different forms of energies. For example, the energy we calculated above
includes the mass of the virtual pions, which is due to the strong force.

KEY AREAS TO BE ANALYZED
Critical issues to be addressed during the next year research activity are as follows:
Detector rotational dynamics after release:

. evaluate effects of rotational acceleration for axis of rotation skewed with respect
to the symmetry axis of the sensing masses;
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- include the effects of gravity gradient field inside capsule and Earth’s gravity
gradients in the external force model;

- derive dynamics-related requirements for capsule leveling mechanism, release
mechanism and centering of sensing masses.

Higher-order mass moments:

- evaluate effects of higher order mass moments due to nearby masses either
concentrated or distributed;

- estimate safe distances from non-corotating masses;
- derive requirements on cylindrical symmetry of sensing masses.
Magnetic disturbances:

- revisit the early estimates of magnetic disturbances as a result of changed
configuration of instrument package;

- derive requirements of magnetic cleanliness for typical levels of ferromagnetic
impurities in the sensing masses. =~ —

Thermal ranqusli;s},

evaluate the temperature drifts of sensor and attached equipment before release
(when attached to the cryostat);

- refine estimates of temperature variations after release (during the measurement
phase) for inter-connected sensor, preamplifier and electronic boxes;

- refine thermal design based on new results;

- derive requirements on optical properties, thermal conductivity, and tolerable
energy dissipations and power duty cycle during calibration of detector,
preamplifier and electronic units.

Cryostat preliminary design:
- evaluate (through Janis Research) mass properties and cost of large cryostat;
- address issue of Helium containment in zero g;

- refine analyses of gravity gradients if mass distribution of cryostat is substantially
different from current estimates.

Sensor release mechanism and capsule leveling mechanism:

oo
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- assess requirements resulting from dynamics and gravity gradients analyses and
define separate sets of requirements for the release and leveling mechanisms;

- work on conceptual design of sensor release mechanism;
- work on conceptual design of capsule leveling mechanism.
Detector requirements:

- continue working in cooperation with our non-US partners on the definition of
detector requirements;

- define, in cooperation with our partners, those laboratory measurements/tests that
need to be conducted for completing the set of requirements.
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